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Thermal Spreading Resistance of Arbitrary-Shape
Heat Sources on a Half-Space: A Unified Approach

Ehsan Sadeghi, Majid Bahrami, and Ned Djilali

Abstract—Thermal spreading/constriction resistance is an im-
portant phenomenon where a heat source/sink is in contact with a
body. Thermal spreading resistance associated with heat transfer
through the mechanical contact of two bodies occurs in a wide
range of applications. The real contact area forms typically a few
percent of the nominal contact area. In practice, due to random
nature of contacting surfaces, the actual shape of microcontacts is
unknown; therefore, it is advantageous to have a model applicable
to any arbitrary-shape heat source. Starting from a half-space
representation of the heat transfer problem, a compact model is
proposed based on the generalization of the analytical solution
of the spreading resistance of an elliptical source on a half-space.
Using a “bottom-up” approach, unified relations are found that
allow accurate calculation of spreading resistance over a wide
variety of heat source shapes under both isoflux and isothermal
conditions.

Index Terms—Elliptical heat source, half-space, spreading
resistance, square root of area, superposition.

Nomenclature

A Area (m2).
a Major semi-axis (m).
B(·, ·) Beta function.
b Minor semi-axis (m).
K(·) Complete elliptic integral of the first kind (7).
k Thermal conductivity (W/m · K).
L Characteristic length scale (m).
N Number of sides of a regular polygon.
n Geometric parameter for hyperellipse.
Q Heat flow rate (W).
q Heat flux (W/m2).
R Thermal spreading resistance (K/W).
R Average temperature based thermal spreading resis-

tance (K/W).
R0 Centroidal temperature based thermal spreading re-

sistance (K/W).
R∗ Nondimensional spreading resistance.
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RT Thermal spreading resistance, isothermal source
(K/W).

r Radius (m).
T Average temperature (K).
T0 Centroidal temperature (K).

Greek Letters

α Angle (rad).
β Length ratio, b/a.
�(·) Gamma function.
ε Aspect ratio.
η Length, xc/r.
ρ Distance in polar coordinate (m).
ω Angle (rad).

Subscript

c Geometrical center of area.

I. Introduction

SPREADING resistance, also sometimes referred to as con-
striction resistance, is commonly encountered in thermal

engineering whenever a concentrated heat source is in contact
with a larger heat conducting surface. This phenomenon
extends also to electric current and mass transfer problems.
In this paper, we focus on thermal spreading resistance which
often appears as a bottleneck in heat management, and is of
relevance in applications such as integrated circuits and laser
heating. In contacting bodies, real interaction between two
surfaces occur only over microscopic contacts [1], [2]. The
actual area of contact, i.e., the total area of all microcontacts,
is typically less than 2% of the nominal contact area [1],
[2]. Thus, heat flow is constricted and then spreads to pass
from the contact area to contacting bodies. Thermal spreading
resistance plays a vital role in the design of numerous ther-
mal, electrical, and electronic devices and systems. Electronic
equipment, aircraft structural joints, surface thermocouples,
boundary lubrication, nuclear reactors, biomedical industries,
and cryogenic liquid storage devices are only a few examples
of such systems [3]–[7].

Assuming dimensions of microcontacts and/or heat sources
are small compared with the distance separating them and with
the dimensions of the body which heat spreads through, the
heat source on a half-space hypothesis can be used [8]. As the
microcontacts or heat sources increase in number and grow
in size, a flux tube problem should be considered to account
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Fig. 1. Arbitrary-shape heat source on a half-space.

for the interference between neighboring microcontacts/heat
sources. For an in-depth review of flux tube solutions for
spreading resistance see [4], [9]–[11].

Several researchers including Kennedy [6], Ellison [12],
Karmalkar et al. [13], and Pawlik [14] focused on analyzing
thermal spreading resistance in electronic devices.

Yovanovich and his coworkers [15]–[18] investigated a
range of steady-state and transient thermal spreading resis-
tance. They proposed thermomechanical models for contact,
gap, and joint resistances of joints formed by conforming
rough surfaces, nonconforming smooth surfaces, and non-
conforming rough surfaces [7]. Applying superposition tech-
niques, Yovanovich developed a method to evaluate spreading
resistance of different shapes on a half-space and derived
found relationships for geometries including singly and dou-
bly connected heat sources such as: hyperellipse, semicircle,
triangle, polygon, and annulus. They also introduced the use
of the square root of the source area

√
A to nondimensionalize

spreading resistance.
Analytical, experimental, and numerical models have been

developed to predict thermal spreading resistance since the
1930s. Several hundred papers on thermal spreading resistance
have been published which illustrates the importance of this
topic.

In practice, due to the random nature of contacting surfaces,
the actual shape of microcontacts is unknown; therefore,
it would be beneficial to have a model applicable to any
arbitrary-shape heat source. In spite of the rich body of
literature on spreading resistance, there is yet no general
model which can accurately estimate the spreading resistance
of an arbitrary-shape heat source on a half-space due to the
challenge of dealing with complex irregular geometries.

In this paper, a compact model is proposed based on the
analytical solution of the spreading resistance of an elliptical
source on a half-space. Using a “bottom-up” approach, it
is shown that for a broad variety of heat source shapes,
the proposed model is in agreement with the existing and/or
developed analytical solutions.

II. Problem Statement

Consider steady-state heat transfer from an arbitrary-shape
planar singly connected heat source on a half-space, Fig. 1.
The temperature field within the half-space must satisfy
Laplace’s equation, ∇2T = 0.

Fig. 2. (a) Point outside the heat source. (b) Point inside the heat source.

Thermal spreading resistance R is defined as the difference
between the temperature of heat source and the temperature
of a heat sink far from it divided by the total heat flow
rate through the contact area Q; i.e., R = �T/Q [19]. For
convenience, the temperature far from the contact area may
be assumed to be zero with no loss of generality, that is

R =
T

Q
. (1)

To evaluate the spreading resistance, the temperature dis-
tribution of the heat source is required. Yovanovich [15]
developed a relationship for the temperature distribution at
each point of an isoflux heat source plane by using the integral
and superposition techniques

T (x, y, 0) =
q

2πk

∫ ω

0
ρ(ω)dω (2)

where ρ and ω are shown in Fig. 2 for points outside and
inside of the heat source area.

The reference temperature of heat sources is usually consid-
ered as the centroid or the average temperature. Substituting
geometric center coordinates into (2), the centroid temperature
can be found. For the average temperature, the temperature
distribution is integrated over the heat source area

T =
1

A

∫ ∫
A

T (x, y, 0) dA. (3)

For complicated shapes, the geometry is subdivided into
simpler shapes; T (x, y, 0) is then computed from (2) for each
subdivided shape and the values are added up. Once the
temperature is determined, the spreading resistance is obtained
through (1).

To investigate the trend of different shapes and aspect
ratios, it is more convenient to nondimensionalize spreading
resistance in the form of R∗ = k L R, where k, L, and R

are the thermal conductivity of half-space, a characteristic
length scale, and the spreading resistance, respectively [16].
Parameters required to define spreading resistance are: ref-
erence temperature, characteristic length scale, and boundary
condition, (see Fig. 3). The reference temperature can be
the centroid or average temperature of the source. According
to Yovanovich [16], spreading resistance values for hyper-
elliptical sources vary over narrower bond when based on
the centroidal temperature rather than when based on the
average temperature. As shown later, there is a relationship
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Fig. 3. Parameters involved in spreading resistance solution.

between the average and the centroid based resistances; for
convenience, the average temperature is used as the reference
temperature. After examining several possible length scales,
we concluded that the square root of the square area

√
A is

the best choice of characteristic length scale, as Yovanovich
proposed [16]. The next parameter is boundary condition;
two boundary conditions are considered: 1) isothermal and
2) isoflux. The isoflux boundary condition is easier to apply
and solve for. Furthermore, a relationship between these
boundary conditions can be established.

III. Characteristic Length Scale

To nondimensionalize the spreading resistance, a character-
istic length scale is required. Different characteristic length
scales are examined in this section. These include perimeter
P , hydraulic diameter (Dh = 4A/P), an arbitrarily chosen
dimension a, and the square root of the source area

√
A.

An analytical solution exists for hyperellipse shapes in
the literature [16]. To compare different characteristic length
scales, a hyperellipse source covering a wide variety of ge-
ometries is selected. A hyperellipse, in the first quadrant, is
described by

y = b
[
1 −

(x

a

)n]1/n

(4)

where a and b are characteristic dimensions along the x and
y axes, respectively, see Fig. 4. The effect of parameter n on
the shape of the hyperellipse source is also shown in Fig. 4.
When n = 1, the hyperellipse yields a rhombic source (a > b),
or a square (a = b); for n = 2, the source is elliptical (a > b),
or circular (a = b); n > 3, yields a rectangle (a > b) or a
square (a = b) source with rounded corners; and for n → ∞,
the shape approaches a full rectangle/square source [16].

Yovanovich [16] calculated the spreading resistance for hy-
perelliptical sources. For instance, the nondimensional spread-
ing resistance with

√
A as the characteristic length scale is

[16]

k
√

AR0 =
1

π

√√√√√ εn

B

(
n + 1

n
,

1

n

) ∫ π/2

0

dω

[sinn ω + εn cosn ω]1/n

(5)

where B(·) is the beta function.

Fig. 4. Hyperellipse heat source in the first quadrant.

The analytic nondimensional spreading resistances R∗ ob-
tained using four different characteristic length scales are
compared in Fig. 5(a)–(d) for both rectangular and elliptical
sources. Comparing the trends for the different characteristic
length scales, it can be concluded that the square root of area√

A is the superior choice for characteristic length scale. With
this choice, the maximum difference between the analytical
solutions of elliptical and rectangular sources is less than
6.8%; and in fact for ε > 0.4, the difference is less than
1.5%. Since elliptical and rectangular sources, corresponding
to (4) with n = 2 and n → ∞, cover a wide range of shapes,
it can be concluded that using

√
A as a characteristic length

scale, nondimensional spreading resistance of a hyperellipse
with any value of 2 < n < ∞ differ less than 6.8% with
respect to an elliptical source. This implies that the effect
of corners on the spreading resistance is not significant for
hyperelliptical shapes with identical areas and aspect ratios.
Since a hyperellipse covers a wide variety of shapes, the square
root of area

√
A is the most appropriate characteristic length

scale for any arbitrary-shape heat source on a half-space, as
Yovanovich suggested [16].

IV. Proposed Model

As shown previously, nondimensional spreading resistances
of hyperelliptical sources with equal areas and aspect ratios
are close for any value of 2 ≤ n ≤ ∞. Thus, if we select one
of these shapes in the model, the spreading resistance of the
others can be predicted with good accuracy. The premise of the
present model is that the solution for hyperelliptical source can
be applied to estimate the spreading resistance of any shape
of heat sources when the area and aspect ratio are the same
as those of the hyperelliptical source. Since, the analytical
solution of the elliptical source is more convenient, it is chosen
as the basis of the model. Note that the isoflux rectangle
could also be used as the basic model, but subsequent analysis
has shown that the isoflux ellipse provides better overall
agreement. According to the present model, an arbitrary-shape
heat source is transformed to an elliptical shape where area
and aspect ratio are maintained constant, (see Fig. 6). The

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on June 25,2010 at 22:08:13 UTC from IEEE Xplore.  Restrictions apply. 



270 IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, VOL. 33, NO. 2, JUNE 2010

Fig. 5. Nondimensional spreading resistance of rectangular and elliptical sources with the characteristic lengths. (a) Perimeter P . (b) Hydraulic diameter Dh;
(c) Major semi-axes a. (d) Square root of area

√
A.

analytical solution for the spreading resistance of an isoflux
elliptical source on a half-space can be expressed using the
general solution proposed by Yovanovich for a hyperellipse
[15]

k
√

AR0 =
2

π
√

π

K(1 − 1
ε2 )√

ε
(6)

where K(·) is the complete elliptic integral of the first kind
defined as

K

(
1 − 1

ε2

)
=

∫ π/2

0

dt√[
1 −

(
1 − 1

ε2

)
sin2 t

] . (7)

There are a number of possible ways of defining the aspect
ratio for arbitrary shapes, and in this paper the following is
adopted

Fig. 6. Geometrical transformation of any arbitrary-shape heat source to
elliptical source.

ε =
b

a
(8)

where a is the maximum length of the shape in arbitrary di-
rection of x and b is the maximum length in the perpendicular
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Fig. 7. Comparison of polygonal heat source with the model.

direction to x as shown in Fig. 6. This definition, though
not necessarily general, is appropriate for most of the shapes
considered in this paper.

V. Comparison With Analytical Solutions

Using the superposition and integral methods proposed by
Yovanovich [15], we find analytical solutions for spreading
resistance of trapezoidal, rhombic, circular sector, circular
segment, and rectangular source with semicircular or round
ends as reported in the proceeding sections. In this section,
the proposed model is compared with available and developed
analytical solutions for a wide variety of isoflux heat sources
on a half-space.

A. Polygonal Source

The analytical solution for a regular polygonal source with
N sides can be written as [15]

k
√

AR0 =
1

π

√
N

tan(π/N)
ln

1 + sin(π/N)

cos(π/N)
. (9)

Fig. 7 shows the effect of number of sides N on the nondi-
mensional spreading resistance. There is not much difference
between the different polygons, and for N ≥ 6 the results
are essentially the same. Also, the results are compared with
the model for ε = 1; the maximum difference between the
analytical solution of polygonal sources and the model is less
than 2.2%.

B. Triangular Source

The analytical solution for an isosceles triangular isoflux
source developed by Yovanovich [15] is given by

k
√

AR0 =

√
2β

3π

[
ln

[
tan

(π

4
+

ω1

2

)]
+ 2 sin(cot−1 2β)×

ln
[
tan

(π

4
+

ω2

2

)
tan

(π

4
+

ω3

2

)]]
(10)

where ω1 = tan−1(3/2β), ω2 = π/2−cot−1(2β), ω3 = π−ω1 −
ω2, and β = b/a.

Fig. 8. Comparison of isosceles triangular heat source with the model.

Choosing a proper aspect ratio is important. The aspect
ratio for an equilateral triangle is unity; hence, the aspect
ratio that also satisfies the equilateral case is ε = β(2/

√
3).

The spreading resistance for isosceles triangular source is
compared with the model in Fig. 8. Results show good
agreement with the model and maximum error is less than
2.2% when ε > 0.1.

C. Rhombic Source

A rhombus is a special case of hyperellipse with n = 1.
The spreading resistance for this shape can be evaluated
from (5). A simpler method to calculate it, would be using
the superposition technique. The nondimensional spreading
resistance for a rhombic source can be written as

k
√

AR0 =

√
2 sin(ω1)

π
√

ε
ln[tan(

π

4
+

ω1

2
) tan(

π

4
+

ω2

2
)] (11)

where ω1 = tan−1 ε, ω2 = π/2 − ω1, A = 2ab, and ε = b/a.
Fig. 9 compares the rhombic heat source solution and the

model, (6); except for small value of aspect ratio, 0 < ε <

0.25, the results agree with the model within 1.7%. The
agreement for the lower aspect ratios is within 10%.

D. Trapezoidal Source

The trapezoidal cross-section is an important geometry
which in the limit when the top side length goes to zero, yields
an isosceles triangle. At the other limit when top and bottom
sides are equal, it becomes a rectangle/square.

The spreading resistance for a trapezoidal source is found
using superposition technique. The relationship for a trape-
zoidal source is unwieldy, and is therefore given in the
appendix. The comparison of the results with the model for
various trapezoidal sources is shown in Fig. 10; again there is
good overall agreement with the model and the difference is
less than 4% when ε > 0.1.

E. Rectangular Source With Round Ends

Rectangular heat source with round ends is a combination
of triangular and circular sector sources. Using superposition
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Fig. 9. Comparison of rhombic heat source with the model.

Fig. 10. Comparison of different trapezoidal heat sources with the model.

technique, the exact solution for this source is

k
√

AR0=

√
2

π

β ln
[
tan

(π

4
+

ω1

2

)]
+
√

1+β2 tan−1 β√
(1+β2) tan−1 β+β

(12)

where ω1 = (π/2) − tan−1 β, A = 2a2[(1 + β2) tan−1 β + β],
β = b/a, and ε = β/

√
1 + β2.

Fig. 11 shows the analytical solution compared with the
model. It can be seen that the model can estimate the spreading
resistance of this shapes with the maximum error of 2% where
ε > 0.2.

F. Rectangular Source With Semicircular Ends

Rectangular heat source with semicircular ends is a com-
bination of triangular and circular segment sources. Using
superposition technique, the exact solution for this source is

k
√

AR0 =
2

π
√

4β + πβ2
×[

β ln
[π

4
+

ω1

2

]
+

∫ α

0

(
cos ω +

√
β2 − sin2 ω

)
dω

]
(13)

Fig. 11. Comparison of “rectangular heat source with round ends” with the
model.

Fig. 12. Comparison of “rectangular heat source with semicircular ends”
with the model.

where α = tan−1 β, ω1 = (π/2)−α, β = b/a, A = a2[4β+πβ2],
and ε = β/(1+β). Fig. 12 shows that the model can predict the
spreading resistance for this shape with the maximum error of
2% where ε > 0.27.

G. Circular Sector Source

Circular sector is composed of triangular and noncircular
sector sources with the common vertex at the centroid. Using
superposition, the exact solution can be written as

k
√

AR0 =
1

π
√

α

[
η sin α ln

[
tan

(π

4
+

ω1

2

)
tan

(π

4
+

ω2

2

)]

+
∫ ω3

0

(√
1 − η2 sin2 ω − η cos ω

)
dω

]
(14)

where η = xc/r = 2 sin α/3α, ω1 = π/2 − α, ω2 =
tan−1

[
(1 − η cos α)/(η sin α)

]
, ω3 = π − ω1 − ω2. The aspect

ratio is defined as the ratio of maximum lengths in y and x

directions, i.e., ε = 2r sin α/r = 2 sin α.
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Fig. 13. Comparison of circular sector heat source with the model.

The relationship developed for the circular sector source is
compared with the model in Fig. 13. Note that since η and
ω1 are functions of α only, and since α = sin−1(ε/2), (14) can
be plotted as a function of ε only. It can be observed that for
small values of aspect ratios, the error is more than 5%, but
for ε > 0.27 the error becomes less than 5%.

H. Circular Segment Source

A circular segment can be presented as a combination of
right angle triangles and noncircular sector sources with the
common vertex at the geometric center. Applying (2) and using
superposition technique, the exact solution for the spreading
resistance can be found

k
√

AR0 =
1

π

√
α − sin 2α

2

[
(η − cos α) ln

[
tan

(π

4
+

ω1

2

)]

+
∫ ω2

0

(√
1 − η2 sin2 ω − η cos ω

)
dω

]
(15)

where xc =
(r/3)(2 sin α − cos α sin 2α

α − sin(2α)/2
, η = xc/r, ω1 =

tan−1
[
sin α/(η − cos α)

]
, and ω2 = π−ω1. The aspect ratio is

defined as the ratio of maximum lengths in y and x directions.
For different value of α, the aspect ratio becomes

ε =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − cos α

2 sin α
, α ≤ π

2

1 − cos α

2
,

π

2
≤ α ≤ π.

(16)

The exact solution of the circular segment source is com-
pared with the model in Fig. 14. The results show good
agreements with the model over the entire range of aspect
ratio.

The examined geometries of a heat source on a half-space
are compared with the model in Table I and Fig. 15. The
definition of aspect ratio, proper criteria to use the model,
and the maximum relative error with respect to the model is
reported in Table I. The maximum error occurs in small values

Fig. 14. Comparison of circular segment heat source with the model.

Fig. 15. Comparison of arbitrary-shape heat sources with the model.

of aspect ratio, ε ≤ 0.01; if aspect ratio is greater than 0.1 the
error decreases sharply. As seen in Table I and Fig. 15, the
model shows good agreement with the analytical solutions for
wide variety of shapes, especially when ε > 0.1.

VI. Reference Temperature

Having established the accuracy of the proposed model
provides for the centroidal temperature based spreading re-
sistance of any arbitrary-shape isoflux heat source on a half-
space, we turn our attention to developing a relationship
between the centroid temperature and average temperature
based spreading resistances. The latter is a commonly used
reference and can also be applied to doubly-connected re-
gions.

There is no analytical solution for the isothermal elliptical
source in the literature, therefore, this problem was solved
numerically in this paper. The results show that the ratio of
nondimensional spreading resistances based on the average
and centroid temperatures for elliptical source varies only
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TABLE I

Comparison and Accuracy of Proposed Spreading Resistance Model for Various Geometries

between 0.8485 and 0.8491; therefore; it remains approxi-
mately constant with an average value of 0.849

k
√

A
−
R

k
√

AR0
=

−
R

R0

∼= 0.849. (17)

Yovanovich et al. [16], [17] already established this result
for some specific shapes; the analysis presented here shows
that in fact this is generally valid for a wide range of
geometries. The nondimensional spreading resistance based on
the average temperature for elliptical and rectangular sources
is shown in Fig. 16. The predicted resistances are indeed very
close. Since the ellipse and rectangle are the lower and the

upper bounds for the hyperellipse within 2 ≤ n ≤ ∞, it can be
concluded that the elliptical source result for nondimensional
spreading resistance based on the average temperature can be
used for hyperelliptical source within 2 ≤ n ≤ ∞. Also, (17)

provides an excellent estimate of the ratio
−
R/R0.

Since the model provides a good estimate for centroidal
temperature based spreading resistance, and (17) is approxi-
mately valid for hyperelliptical shapes covering a wide variety
of geometries, (17) can be used with confidence to predict the
ratio of spreading resistance based on the average and centroid
temperatures for a broad variety of heat source shapes. Thus,
combining (6) and (17), the model for the average temperature
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Fig. 16. Comparison of average temperature based spreading resistances for
elliptical and rectangular heat sources.

based spreading resistance reads

k
√

A
−
R =

1.6974

π
√

π

K(1 − 1

ε2
)

√
ε

. (18)

VII. Boundary Condition

We have so far considered spreading resistance for any
isoflux arbitrary-shape heat source on a half-space. Yovanovich
[18] developed an analytical solution for an isothermal ellip-
tical source

k
√

ART =

√
ε

2
√

π
K(1 − ε2). (19)

Schneider [20] numerically solved Laplace’s equation for
the rectangular source and reported a correlation if the form
of

k
√

ART =
1√
ε

[
0.06588 − 0.00232

ε
+

0.6786

(1/ε) + 0.8145

]
: 0.25 ≤ ε ≤ 1. (20)

A comparison between the solutions of isothermal rectan-
gular and elliptical sources indicates a maximum difference of
1.27% which occurs at ε = 1, while the solutions are essen-
tially identical for an aspect ratio ε less than 0.4. Since the
isoflux elliptical source which is proposed as the model pre-
dicts accurately spreading resistance of any isoflux arbitrary-
shape heat source, this suggests that the solution for isothermal
elliptical source can be used for a wide variety of isothermal
heat sources. Thus, the general form of the model for any
arbitrary-shape heat source on a half-space can be expressed as

k
√

AR =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1.6974

π
√

π

K(1 − 1

ε2
)

√
ε

, isoflux (average temp.)

√
ε

2
√

π
K(1 − ε2), isothermal.

(21)

Fig. 17. Proposed model for isothermal and isoflux boundary conditions.

Fig. 17 presents the spreading resistance for isothermal
and isoflux boundary conditions calculated using (21). The
ratio of isothermal to isoflux spreading resistance does not
change much and remains approximately constant at 0.925
with Risothermal/Risoflux � 0.925 ± 0.0005. In practice, the
boundary condition is a combination of isoflux and isothermal
conditions and these provide two bounds for actual thermal
spreading resistances.

VIII. Summary And Conclusion

Thermal spreading resistance is an important major phe-
nomenon in thermal engineering problems, whenever temper-
ature and cross-sectional area variations exist. In this paper, a
model based on the generalization of the analytical solution
of isoflux elliptical source has been proposed, and analytic
solutions were obtained for a variety of complex shapes.
The generalized model presented here provides a unified
approach for calculating the spreading resistance for a large
variety of geometries, and under both isoflux and isothermal
conditions. The highlights of the model and results are as
follows.

1) The most appropriate characteristic length scale for
nondimensional spreading resistance is square root of
area

√
A.

2) The spreading resistance for arbitrarily singly connected
shapes agrees with the proposed model.

3) The ratio of isothermal to isoflux spreading resistance
is approximately 0.931 for a wide range of shapes for
different aspect ratios.

Appendix

Isosceles Trapezoidal Source

The spreading resistance for an isosceles trapezoidal source
is found using superposition technique. Considering the pa-
rameters shown in Fig. 18, the nondimensional spreading
resistance based on the centroidal temperature is found as
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Fig. 18. Cross-section of an isosceles trapezoidal heat source.

k
√

AR0 =
1

π

OI (
2 + 
3) + OH
1 + OK
4√
A

(22)

where 
i= ln[tan((π/4) + (ωi/2))]. For θ > 90, 
2 and ω2

must be replaced by −
2 and −ω2, respectively.
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